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We discuss the interband light tunneling in a two-dimensional periodic photonic structure, as studied re-
cently in experiments for optically induced photonic lattices �Trompeter et al., Phys. Rev. Lett. 96, 053903
�2006��. We identify the Zener tunneling regime at the crossing of two Bloch bands, which occurs in the
generic case of a Bragg reflection when the Bloch index crosses the edge of the irreducible Brillouin zone.
Similarly, higher-order Zener tunneling involves four Bloch bands when the Bloch index passes through a
high-symmetry point on the edge of the Brillouin zone. We derive simple analytical models that describe the
tunneling effect, and calculate the corresponding tunneling probabilities.
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I. INTRODUCTION

Zener tunneling in tilted periodic potentials is an intrigu-
ing physical phenomenon which occurs when the energy dif-
ference imposed on the period by a linear potential becomes
of the order of the energy gap between two nearest Bloch
bands �1�. A simple model studied independently by Zener
�1�, Landau �2�, and Majorana �3� captures the essence of
this phenomenon. The well-known physical examples in-
clude electrical breakdown in Zener diodes �4�, electrical
conduction in nanotubes �5� and superlattices �6�, pair tun-
neling in Josephson junctions �7�, tunneling of the Bose-
Einstein condensate in optical lattices �8,9�, and an optical
analog of tunneling in waveguide arrays and photonic
crystals �10,11�.

Recent observation of Zener tunneling in two-dimensional
photonic lattices �11� calls for a nontrivial generalization of
the Landau-Zener-Majorana system, since the latter de-
scribes only the tunneling at an avoided crossing of two
Bloch bands. In two dimensions the situation of more than
two energy levels with comparable energy gaps between
them is generally unavoidable. This is due to the fact that in
higher dimensions there exist more than one distinct �i.e., not
equivalent� Bragg reflection planes. Thus, at least in some
cases an n-level system with n�2 must be invoked to de-
scribe Zener tunneling in a two-dimensional lattice. In this
paper we analytically study all possible scenarios of Zener
tunneling in two-dimensional square lattices. To this end we
invoke the so-called shallow lattice approximation �see the
definition below�. Our results can be applied to the tunneling
in two-dimensional photonic lattices observed in Ref. �11�.

Bloch oscillations and Zener tunneling in two-
dimensional lattices have been studied numerically in Refs.
�12,13�. However, a complete analysis of all possible cases
was not presented. In addition, nonlinear effects of Zener
tunneling of Bose-Einstein condensate in two-dimensional
optical lattices has been considered recently �14� where it
was shown that the modulational instability of Bloch waves
results in an asymmetry of the resonant upper-to-lower band
vs lower-to-upper band tunneling �see also Refs. �15–17� for
other nonlinear effects of tunneling in one-dimensional lat-

tices�. In our case, nonlinearity is negligible and we restrict
ourselves to the linear Zener tunneling.

The paper is organized as follows. In Sec. II we consider
the general model for the beam propagation in a photonic
lattice and discuss the shallow-lattice approximation. Section
III contains the derivation of the Landau-Zener-Majorana
type models for Zener tunneling in a shallow lattice. Conclu-
sions and perspectives are summarized in Sec. IV.

II. MODEL AND SHALLOW-LATTICE APPROXIMATION

We describe the propagation of an optical beam by the
paraxial equation for the normalized electric field envelope
E,

i
�E

��
+

1

2
� �2E

��1
2 +

�2E

��2
2 � + ��n���E = 0, �1�

where �= ��1 ,�2� are dimensionless transverse coordinates:
�1= �2� /d�x, �2= �2� /d�y; �=2�� / �n0d2�z is the dimension-
less propagation distance, with � being the wavelength in
vacuum, n0 the bulk refractive index, and d the lattice period;
�=�n0�d /��2 with � being the nonlinear coefficient. The to-
tal induced refractive index pattern �n��� is given as
follows:

�n =
Ig��� + Im���

1 + Ig��� + Im���
, �2�

where the potential

Ig��� = A2cos2� �1

2
�cos2� �2

2
� �3�

is due to an optical lattice and the additional potential

Im��� =
B

2
�1 + tanh�	eR · ��� ,

where 	=d / �2�
� describes the refractive index ramp in the
direction eR �the notations correspond to those of Ref. �11��.

The shallow-lattice approximation corresponds to the con-
dition ��n�1 �see Eq. �1��. For instance, in the experiment
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reported in Ref. �11� the induced optical lattice had
�=21.59. Thus to have a weak-lattice case within the same
experimental parameters one should use a weak cw laser
beam satisfying the condition A2�1/��0.05.

Assuming that a weak ramp field �B�1� changes slowly
over the lattice period, i.e., 2�	B=Bd /
�A2, and therefore
the Bloch band structure is preserved �18–20�, we obtain in
this case

��n = �Ig��� +
1

2
�B + � · � , �4�

where �=�B	eR /2=�n0Bd3 / �4��2
�eR. Further discussion
of the validity of the Landau-Zener-Majorana models de-
rived below is given in the next section.

Instead of �Ig���, we will use the combined potential

V = V0�cos��1� + cos��2� + � cos��1�cos��2�� �5�

where V0=�A2 /4, and � is a parameter that enables us to
establish the effect of the nonseparability of the photonic
lattice Ig��� on the tunneling probability. We also drop the
insignificant constant terms �B /2 and �A2 /4. The weak
ramp condition now reads �� � �V0.

The lattice �3�, also called the “quantum antidot” in the
field of Bose-Einstein condensates �13�, corresponds to
�=1. Its band structure for V0=0.05 is shown in Fig. 1.

III. SIMPLE MODELS FOR ZENER TUNNELING

An optical beam propagating in the lattice experiences a
strong reflection at the resonant Bragg planes �lines in two
dimensions�, i.e., the Bragg planes which are defined by the
reciprocal lattice vectors for which the lattice potential has
nonzero Fourier components �see, e.g., Refs. �21,22��. Let us
first briefly recall the basic theory. In the Fourier space
the equation for the periodic Bloch wave �q���, i.e.,
E=exp	i
�+ iq ·�
�q���, reads

��q − Q�2 − 
�Cq−Q + �
Q�

V̂Q�−QCq−Q� = 0 �6�

where Q denotes a vector of the reciprocal lattice and Cq−Q

and V̂Q�−Q are the Fourier components of the Bloch wave
�q��� and the lattice V���, respectively. The probe beam with

the Bloch index q= �k , � � is effectively reflected by the lat-
tice in the first order in V0 when the end point of the Bloch
index lies on the resonant Bragg plane defined by Q�−Q,

i.e., when �q−Q�2= �q−Q��2=
 and V̂Q�−Q�0.
For the lattice �5�, there are two distinct planes of the

quasi-one dimensional Bragg resonance, denoted by B1,0 and
B1,1 in Fig. 2. The corresponding vectors of the reciprocal
lattice are Q= �2qB ,0� and Q= �2qB ,2qB�, respectively �in
our case, qB=1/2�. Below we consider the corresponding
Bragg resonances.

A. Generic B1,0 resonance

The reflection point on the Bragg plane B1,0 is
q= �qB ,�0� with some �0� ±qB+O�V0� �i.e., outside the
neighborhood of the M point of radius proportional to V0�.
For a broad beam one can proceed in a way similar to the
approach of Ref. �23�, which studied accelerating electrons
in the solid-state theory, and assume that the beam is de-
scribed by a Bloch wave with the propagation-dependent
Bloch index q=q���. By keeping only the resonant terms we
arrive at the following approximation for the Bloch wave
describing a broad beam near the point of Bragg reflection
�or, equivalently, resonance�:

� = �C1���eik����1 + C2���ei�k���−2qB��1�ei�����2. �7�

Substituting this expression into Eq. �1�, with ��n
=V���+� ·�, and projecting on the resonant terms yields
dk /d�=−�1, d� /d�=−�2, which are necessary to cancel the
linear term in � �see, e.g., Ref. �17��, and then obtain a sys-
tem of coupled equations for the incident C1 and Bragg re-
flected C2 amplitudes �see also Ref. �15��,

i
dC1

d�
=

1

2
��2 + k2�C1 +

V0

2
C2,

i
dC2

d�
=

1

2
��2 + �k − 2qB�2�C2 +

V0

2
C1. �8�

It is convenient to set the propagation variable �
equal to zero at the resonance point, so that

FIG. 1. Bloch band structure �the first seven bands� correspond-
ing to the lattice of Eq. �5�. Here V0=0.05 and �=1.

FIG. 2. �Color online� Schematic representation of the extended
Brillouin zone and the two cases of the Bragg resonance for the
two-dimensional optical lattice described in the text. Solid lines
indicate the Bloch index and dashed lines are the resonant index
given by q−Q with Q corresponding to the considered Bragg plane.
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k=qB−�1�. Redefining the amplitudes as �C1 ,C2�
=exp	−i���d� �2+qB

2�+�1
2�3 /3� /2
�c1 ,c2� we obtain the

Landau-Zener-Majorana system �1–3�

i
dc1

d�
= −

�1�

2
c1 +

V0

2
c2,

i
dc2

d�
=

�1�

2
c2 +

V0

2
c1. �9�

System �9� is Hamiltonian; its adiabatic energy levels or,
equivalently, the two Bloch bands of 
, 
1,2
= �
q2+ �V0 /2�2, experience an avoided crossing at q=0,
where q��1� /2 has the meaning of the running band pa-
rameter.

The probability of tunneling, P, defined through the
final amplitude P= �Cj����2 for the initial condition
�Cj�−� � � =1, is given by the well-known Landau-Zener for-
mula P=exp	−�V0

2 / �2 ��1 � �
 for both the lower-to-upper and
upper-to-lower band tunneling processes. Here �1 is the
component of � in the direction perpendicular to the Bragg
plane B1,0, i.e., to the XM border of the irreducible Brillouin
zone. In Fig. 1 this case of tunneling corresponds to the
transitions between the two lowest bands along the XM-line.
Thus, this case of interband tunneling is quasi-one-
dimensional even if it occurs in a two-dimensional lattice
�e.g., see Refs. �15–17��.

B. Generic B1,1 resonance

In this case, the reflection point on the Bragg plane B1,1 is
q= �k0 ,�0� with k0+�0=2qB and �0�qB+O�V0�. The reso-
nant terms of the Bloch wave read

� = C1���eik����1+i�����2 + C2���ei�k���−2qB��1+i�����−2qB��2.

�10�

Setting k=k0−�1� and �=�0−�2�, redefining the
amplitudes as �C1 ,C2�=exp	−i��k0

2+�0
2+ ��2−�1��k0−�0���

+ ��1
2+�2

2��3 /3� /2
�c1 ,c2�, and following all the steps de-
scribed above results in the following Landau-Zener-
Majorana system:

i
dc1

d�
= −

�1�

2
c1 +

�V0

4
c2,

i
dc2

d�
=

�1�

2
c2 +

�V0

4
c1, �11�

where �1=�1+�2.
The corresponding Bloch bands are 
1,2

= �
q2+ ��V0 /4�2, with q��1� /2. The interband tunneling
probability when crossing the B1,1 plane is thus given by the
formula P=exp	−��2V0

2 / �8 ��1+�2 � �
.
The Bragg plane B1,1 is transformed to the �M border of

the irreducible Brillouin zone by the following transforma-
tion: k=2qB−k�, �=��. Note that the transformation changes
the coordinates as follows �1=−�1�, �2=�2�, thus �1=−�1� and
�2=�2�. Therefore, the probability of tunneling when cross-

ing the �M border of the irreducible Brillouin zone reads
P=exp	−��2V0

2 / �8 ��2−�1 � �
.
The quantity ��2−�1 � /2 is the component of � perpen-

dicular to the �M line �exactly ��2−�1 � /
2� multiplied by
the half length of the respective reciprocal lattice vector

2qB. In this respect, this case of tunneling is again quasi-
one-dimensional.

C. Fourfold B1,1 resonance

In this more general case, the reflection point is the M
point. There exist exactly four Bloch indices which are in
resonance; they correspond to the four high-symmetry points
of the first Brillouin zone equivalent to the M point. This
case is specific to the two-dimensional tunneling, since it
leads to a four-level system. The resonant part of the Bloch
wave reads

� = C1���eik����1+i�����2 + C2���ei�k���−2qB��1+i�����−2qB��2

+ C3���ei�k���−2qB��1+i�����2 + C4���eik����1+i�����−2qB��2.

�12�

Setting k=qB−�1� and �=qB−�2�, defining cj

=ei�qB
2

�+��1
2+�2

2��3/6�Cj, and following all the above steps we
derive the following system:

i
dc1

d�
= −

�1�

2
c1 +

�V0

4
c2 +

V0

2
�c3 + c4� , �13�

i
dc2

d�
=

�1�

2
c2 +

�V0

4
c1 +

V0

2
�c3 + c4� , �14�

i
dc3

d�
= −

�2�

2
c3 +

�V0

4
c4 +

V0

2
�c1 + c2� , �15�

i
dc4

d�
=

�2�

2
c4 +

�V0

4
c3 +

V0

2
�c1 + c2� , �16�

with �1=�1+�2 and �2=�2−�1. The invariance of the sys-
tem with respect to rotations by � /2, which is the invariance
of the lattice itself, is evident from the corresponding trans-
formation: �1→�2 and �2→−�1.

The system �13�–�16� can be viewed as a coupling �by the
terms with V0 /2� of two cases of the Bragg reflection: one is
for crossing of the B1,1 plane �Eqs. �13� and �14�� and the
other one is for crossing of the B−1,1 plane �Eqs. �15� and
�16�; the reciprocal lattice vector is Q= �−2qB ,2qB��.

A schematic correspondence between the amplitudes �ck�2
of the Bloch wave and the tunneled and reflected beams is
depicted in Fig. 3.

The generalized �i.e., multilevel� Landau-Zener-Majorana
system defined by Eqs. �13�–�16� leads to a fourth-order
polynomial which does not allow a simple analytical solution
for the Bloch bands. However, it is easy to establish that the
four Bloch bands assume the following values at the crossing
point ��=0�:
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�M� =
1

4
+ V0��

4
− 1;−

�

4
;−

�

4
;1 +

�

4
� , �17�

where we have used that �qM � =1/
2. Thus, recalling that in
our case �=1, we see that the shallow lattice captures at least
the qualitative behavior of the Bloch bands at the M point of
the experimental two-dimensional optical lattice of Ref. �11�,
where the two inner Bloch bands are also crossing at the M
point �see also Fig. 1�.

Though there exists no general formula describing the
tunneling probabilities between various levels in a multilevel
Landau-Zener-Majorana system �see, e.g., Refs. �24–26� for
further discussion�, in the generic case, i.e., �1,2�0, the
probability of the transition between the lowest and the high-
est adiabatic levels is known �24,26�. This corresponds to the
tunneling across the complete band gap discussed in Ref.
�11�. Assuming that ��1+�2 � � ��2−�1�, we obtain the prob-
ability of tunneling between the first and the fourth bands as
follows:

P = exp�−
�V0

2

2
� �2

4��2 + �1�
+

1

��1�
+

1

��2��� . �18�

In the opposite case, i.e., when ��1+�2 � � ��2−�1�, the Bloch
index passes through an equivalent M point and the probabil-

ity of tunneling is given by the same formula with the change
��1+�2 � → ��2−�1�.

Two particular cases of tunneling at the M point are
shown in Figs. 4 and 5. We have simulated numerically the
system �13�–�16� using the fourth-order Runge-Kutta
method. Since the system is written for the so-called diabatic
basis, a large � interval was used for reliable results. Asymp-
totically, i.e., for �→ ±�, the diabatic basis coincides with
the adiabatic one �in our case, the latter defines the respective
Bloch bands�. The dashed line gives the analytical prediction
of Eq. �18�. The oscillations of the amplitudes �ck�2 in Figs. 4
and 5 after the tunneling process reflect a slight difference
between the respective amplitudes in the diabatic and adia-
batic bases �in the adiabatic basis there are no oscillations�.

In Fig. 4 the ramp direction is along the �M line and the
output powers of the side beams �i.e., W� �C3,4�2� are the
same. In Fig. 5 the ramp direction is close to the �X border,
thus creating a substantial asymmetry in the output beams 3
and 4, similar to the tunneling observed in the experiment
�11�.

We conclude this a section with a discussion of validity of
the Landau-Zener-Majorana models considered above. In
particular, we consider the fourfold B1,1 resonance. The sys-

FIG. 3. �Color online� Schematic representation of tunneling at
the M point of the Brillouin zone. The four beams follow the direc-
tion of the linear ramp �indicated by arrows; here along the �M
line�.

FIG. 4. �Color online� Tunneling at the M point of the Brillouin
zone. Here the parameters are �=0.05�cos�� /4� , sin�� /4��, i.e., the
ramp is in the �M direction, V0=0.1, and �=1. The dashed line is
the analytical prediction given by the formula �18�.

FIG. 5. �Color online� Tunneling at the M point. Here the pa-
rameters are V0=0.1, �=1, and �=0.05�cos�0.25� , sin�0.25��, i.e.,
the ramp is directed close to the �X line. The dashed line is the
analytical prediction.

FIG. 6. �Color online� The error of the Landau-Zener-Majorana
model for the fourfold B1,1 resonance. The curves give the absolute
value of the maximal relative difference between the first four
Bloch bands of the full two-dimensional equation and the corre-
sponding energy levels of the four-level Landau-Zener-Majorana
model.
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tem �13�–�16� approximates the four resonant Bloch bands of
the lattice at the M point �see Fig. 1�. The approximate ana-
lytical values for the four energies at the M point, given by
Eq. �17�, can be employed to derive a quantitative estimate
on the validity of the Landau-Zener-Majorana model
�13�–�16�. The result is presented in Fig. 6. We have used
four values of the parameter �: �=0 �solid line; the egg crate,
i.e., separable lattice�, 1 �dashed line; the quantum antidot in
the terminology of Ref. �13��, 2 �dotted line�, and −1
�dash-dotted line; the quantum dot�.

From Fig. 6 one can see that for the lattice potentials with
V0�0.05 the relative error of the finite-dimensional approxi-
mation of Zener tunneling by the Landau-Zener-Majorana
models is below 5%. For the experimental lattice of Ref.
�11�, i.e., the quantum antidot ��=1�, the relative error is less
then 5% for V0�0.15. On the other hand, for any particular
lattice potential, for the values of the lattice strength V0
above some threshold the finite-dimensional approximation
will break down, as it does for the quantum dot lattice al-
ready for V0=0.15.

IV. CONCLUDING REMARKS

We have derived simple models that allow one to describe
one-dimensional and more general two-dimensional Zener
tunneling in two-dimensional periodic photonic structures
and calculate the corresponding tunneling probabilities.

We have found that a square two-dimensional photonic
lattice allows one to observe the quasi-one-dimensional tun-
neling, when the Bloch index crosses either the �M border
or the XM border of the irreducible Brillouin zone away
from the M point, and the specific two-dimensional tunnel-
ing, when the Bloch index passes through the border of the
Brillouin zone at the M point �more precisely, in its neigh-
borhood with radius of the order of V0�. We notice that in the
first order in V0 the Bloch oscillations are not affected by
tunneling when the Bloch index crosses the �X border of the
irreducible Brillouin zone of the two-dimensional lattice

given by Eq. �5� of Sec. II. We have considered only one
possible case of the genuine two-dimensional tunneling at
the M-point, but it can be also observed at the �-point. This
case, however, is more difficult to realize experimentally,
since the beam should be initially prepared in the
higher-band.

In our analytical calculations we have employed a
shallow-lattice approximation which can be related to the
experimental setup used in Ref. �11� only qualitatively, and
we do observe at least qualitative correspondence with the
experiment. There exist two general ways to realize a shal-
low lattice in the experimental setup. The first one is to re-
duce the power of the laser beams creating the optical lattice
potential Ig���; this requires the condition A2�1/�, which
we have adopted in this paper. The second one is to change
the value of the parameter �=�n0�d /��2 so that ��1. In the
latter case, the lattice potential will be different from that
used in our analytic calculations �see Eq. �5��, namely, it will
have all higher harmonics in the Fourier expansion. Qualita-
tively this will result in the following changes. First of all,
there will be a substantial tunneling when crossing the �X
border. Second, the higher harmonics will also affect the
probabilities of all other tunneling cases. However, the latter
effect is of a higher order in the potential amplitude, since
the higher harmonics are not resonant. Therefore, the theory
developed here can be applied to this case as well. The tun-
neling when crossing the �X border is quasi-one-
dimensional, and it can be treated similarly to the quasi-one-
dimensional tunneling cases discussed in this paper.
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